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Lentiviral vectors and cardiovascular diseases: a genetic tool
for manipulating cardiomyocyte differentiation and function

E Di Pasquale1,2, MVG Latronico3, GS Jotti4 and G Condorelli5

Engineered recombinant viral vectors are a powerful tool for vehiculating genetic information into mammalian cells. Because of
their ability to infect both dividing and non-dividing cells with high efficiency, lentiviral vectors have gained particular interest
for basic research and preclinical studies in the cardiovascular field. We review here the major applications for lentiviral-vector
technology in the cardiovascular field: we will discuss their use in trailing gene expression during the induction of
differentiation, in protocols for the isolation of cardiac cells and in the tracking of cardiac cells after transplantation in vivo;
we will also describe lentivirally-mediated gene delivery uses, such as the induction of a phenotype of interest in a target cell
or the treatment of cardiovascular diseases. In addition, a section of the review will be dedicated to reprogramming approaches,
focusing attention on the generation of pluripotent stem cells and on transdifferentiation, two emerging strategies for the
production of cardiac myocytes from human cells and for the investigation of human diseases. Finally, in order to give a
perspective on their future clinical use we will critically discuss advantages and disadvantages of lentivirus-based strategies
for the treatment of cardiovascular diseases.
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INTRODUCTION

Bioengineered recombinant viruses are vehicles of choice for deliver-
ing genetic information into a target cell, being endowed with a
sophisticated machinery that facilitates efficient cell entry, transport to
the nucleus and expression of their genomic package in the infected
cell. Adenoviral and adeno-associated vectors have been the preferred
system for myocardial gene therapy applications for many years
(and adeno-associated viruses are still used for myocardial gene
delivery); however, their popularity has been diminished by immu-
nogenicity issues, their innate tropism for some human tissues and
their inability to integrate into the host genome, drawbacks that are
reflected in inefficient gene delivery and a short duration of transgene
expression.1

Lentiviral vectors (LVVs) can potentially overcame such limitations,
and for this reason they are now widely used in biological research and
gene therapy applications: on one hand, they resemble g-retroviral
vectors and so are able to stably integrate into the genome of the target
cell, allowing for persistent expression of the gene of interest (the
transgene); on the other hand, LVVs can transduce both replicating
and non-replicating cells with high efficiency, making them suitable
for use on terminally differentiated cells, such as neurons, hepatocytes
and cardiomyocytes (CMCs).2–6 These characteristics make LVVs a
favourite choice for major applications in the cardiovascular field
(Figure 1): they are routinely employed for dissecting the cardiovas-
cular differentiation process, through their use in protocols for the
purification of cardiac cells and for the tracking of gene expression
in vitro and in vivo; in addition, they are used in the study of
cardiovascular diseases and are being evaluated for their potential in
gene transfer or gene correction strategies for therapeutic ends.

Moreover, LVV-mediated transduction is instrumental in two recently
developed methodologies, transdifferentiation and induced pluripo-
tent stem (iPS) cell generation, processes that represent important
milestones in the production of patient-specific cells for research on
pathogenesis and for drug discovery.

THE LVV SYSTEM

LVVs mainly derive from the HIV-1 virion. They are designed to be
replication-defective by separating the cis- and trans-acting sequences
of the HIV genome. This minimizes the risk of generating replication-
competent recombinants and produces virus particles that are unable
to continue to infect their host after they deliver their genetic content7.
Since they were first described,8 many improvements have been made
to subsequent ‘generations’ of vectors in order to improve efficiency
and biosafety. Today, the third generation system is used: this consists
of three plasmids that are transfected together into a ‘packaging’ cell
line (usually 293T cells) to produce lentiviral particles. These three
plasmids are the packaging vector, encoding the genes required for
replication under the control of a heterologous promoter; the envel-
ope-encoding plasmid, carrying the envelope gene (usually from the
vesicular stomatitis virus (VSV-G)) and the transfer vector, in
which the transgene—which can be either a reporter, such as green
fluorescence protein, or an exogenous gene for experimentation or
therapeutic use—is cloned flanked by long terminal repeats and the
Psi-sequence of HIV. The long terminal repeats are necessary for the
integration of the transgene into the genome of the target cell, whereas
the Psi-sequence acts as a signal sequence necessary for packaging
RNA with the transgene into the virion. Recent progress in LVV
development and production are reviewed elsewhere.9,10

Received 31 October 2011; revised 12 January 2012; accepted 6 February 2012

1IRCCS Multimedica, Milan, Italy; 2Institute of Genetic and Biomedic Research (IRGB) – UOS Milan, Milan, Italy; 3IRCCS Istituto Clinico Humanitas, Rozzano, Italy;
4Department of Public Health, University of Parma, Parma, Italy and 5Department of Medicine, National Research Council of Italy, Milan, Italy
Correspondence: Professor G Condorelli, Department of Medicine, National Research Council of Italy, Via G. Fantoli 16/15, Milan 20138, Italy.
E-mail: gianluigi.condorelli@cnr.it

Gene Therapy (2012), 1–7
& 2012 Macmillan Publishers Limited All rights reserved 0969-7128/12

www.nature.com/gt

http://dx.doi.org/10.1038/gt.2012.19
mailto:gianluigi.condorelli@cnr.it
http://www.nature.com/gt


LVVS AS A TOOL FOR TRACKING CARDIAC CELLS

Obtaining cardiac progenitor cells (CPCs) and mature CMCs is
imperative for investigating the mechanisms underlying cardiovascu-
lar diseases and for developing regenerative-medicine applications.
Because of their multilineage differentiation potential, pluripotent
stem cells (PSCs), such as embryonic stem cells and iPS cells (vide
infra), represent an ideal source from which to obtain CMCs: in fact,
embryonic stem cells and iPS cells give rise to all the cell derivatives of
the three germ layers (ectoderm, mesoderm and endoderm).11–13

PSCs spontaneously differentiate into CMCs but, unfortunately, the
efficiency of this process is extremely low (0.1–1%). Over the last few
years, several methods have been proposed to improve the efficiency of
this process;14,15 however, inducing a cardiac fate is still extremely
difficult, so easy and reliable approaches for the evaluation of
differentiation strategies are needed.

In addition, having a defined cell population is important in
obtaining meaningful results in basic science, and acquiring a
highly pure cell population would be crucial for transplantation
protocols, in order to prevent tumorigenesis associated with the
presence of contaminating ‘stem’ cells. Towards these ends, sorting

for specific surface antigens of the cell of interest is the best
approach; however, no such antigens have been described for
CMCs and only a limited number are available for CPCs.16,17

Therefore, the creation of transgenic cell lines harbouring either a
reporter gene or exhibiting antibiotic resistance under the control
of a cardiac-restrictive promoter have been proposed; these meth-
ods have been demonstrated to be effective and easily applicable in
mouse systems.18–22 Unfortunately, the translation of these efforts
to the clinic is not possible because in human cells, homologous
recombination events are infrequent and cloning efficiency is
extremely low.23 As a result, alternative strategies are needed for
obtaining stable, long-term gene expression in the human setting,
and LVVs may play a part in this requirement. In fact, because they
circumvent the limitations associated with the application of
homologous recombination in humans, LVVs driving cardiac-
specific expression can be used for monitoring cardiac induction
methods, for evaluating the efficiency of these methods and to
follow cardiac cell engraftment and maturation in vivo;24 these
vectors can also be employed for inducing PSCs towards the cardiac
lineage and for purification of CMCs.

Figure 1 LVV applications. (a) Schematic summary of the major applications of LVVs in the cardiovascular biology field. Cardiac-specific promoters: LVVs can

be used as a tool for tracking cardiac cells during differentiation, identifying cardiac cells in vivo and purification of cardiac-specific cell populations during

differentiation using either fluorescent reporter genes or proteins that confer specific resistance to drugs (left box); in addition, LVVs may be used for the

delivery of specific genes to drive cardiac differentiation or for gene transfer/correction strategies for therapeutic ends (right box). (b) Reprogramming

approaches and their use for dissecting and treating cardiovascular diseases: patient-specific CPCs and CMCs can be obtained from human skin fibroblasts

either by generation and differentiation of iPS cells or by a direct transdifferentiation strategy. Major short-term applications include disease modelling and

drug discovery; moreover, the possibility to produce patient-specific CPCs or CMCs is extremely interesting for future cell replacement therapy applications.
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Various protocols have been optimized for the transduction of
PSCs, and cardiac-specific systems have been developed for fluorescent
tracking and drug-resistance selection of CMCs.25,26 Our group has
also given a contribution to this field: we have constructed a cardiac-
specific LVV in which expression of the transgene is driven by a short
fragment of the cardiac troponin I promoter (TNNI3) with a human
cardiac a-actin enhancer (hEnAct).27 Using an enhanced green fluor-
escence protein reporter, the TNNI3-LVV has been demonstrated to
be effective in tracking cardiac lineage induction during differentiation
in both mouse and human embryonic stem cells; moreover, the
addition of hEnAct conferred a further increase in expression speci-
ficity to the TNNI3-LVV in human embryonic stem cells. In fact, a
limiting factor of tissue-specific promoters is lower levels of transgene
expression compared with more ubiquitous counterparts, such as
human cytomegalovirus or phosphoglycerate kinase promoters; the
identification of genomic sequences that enhance tissue-specific
expression (called ‘enhancers’) overcomes this limitation.28

The efficacy and specificity of the hEnAct-TNNI3-LVV system has
been confirmed by the determination of caffeine responsiveness in
transduced cardiosphere-derived CPCs.29 It is currently being used
in our laboratory to set up improved differentiation protocols for
PSCs (including iPS cells) and to determine the efficiency and
reliability of methods for the induction of cardiac fate and for the
isolation of CPCs and mature CMCs (Rizzi et al30 and Di Pasquale
et al., unpublished data).

Other systems have been described that employ promoters that are
active earlier or later on along the differentiation track, that allow to

follow cardiac differentiation induction in time and to select for
specific CPCs or mature CMCs from a mixed bulk of differentiated
cells.26,31,32 A schematic representation of these cardiac-specific con-
structs is given in Figure 2.

In addition to these tracking methods, a specific cell population can
be selected by controlled expression of genes that determine drug
resistance; this strategy has been shown effective in mouse transgenic
models.19,22 Kita-Matsuo et al.26 recently proposed vectors carrying
T/Brachyury and alpha-myosin heavy chain (aMHC) promoters
driving drug-resistance expression in early mesodermal cells and
CMCs, respectively: this drug-selection protocol yielded 96% pure
CMCs, which had a molecular profile and electrophysiological proper-
ties similar to those of human CMCs.

Altogether, these reports confirm the usefulness of cardiac-specific
LVVs as a tool for monitoring cardiac cells and highlight their
potential for isolating pure populations of CMCs or CPCs for
replacement therapy of the damaged heart. Recent publications
from Higuchi et al.33 and Lee et al.34 have described a cardiac-specific
LVV for targeted gene therapy of Fabry disease (vide infra).

Despite the encouraging data obtained with the described cardiac-
specific systems, expression leakage in non-cardiac cells has been
reported. This emphasizes the need for continuous validation and
refining of the LVV design to obtain more specific and finely regulated
results. To this end, Barth et al.32 proposed the use of the cardiac
sodium-calcium exchanger (NCX1) promoter to mark cardiac cells
more specifically: in fact, compared with promoters of sarcomeric
genes (i.e., myosin light chain (MLC)-2v, aMHC3, cardiac troponin

Figure 2 Examples of cardiac-specific LVVs. (a) Schematic representation of a LVV construct, basically constituted by a reporter gene, or a gene conferring

resistance to a specific drug, the expression of which is driven by a promoter of a gene specifically expressed either earlier or later on during the

differentiation of PSCs towards CMCs, flanked by long terminal repeats (LTR). The vectors also include sequences necessary for the correct packaging of

the viral genome (including the transgene). CPPT, nuclear import sequence; RRE, Rev-response element; sa, splice acceptor sites; sd, major splice donor

site; Wpre, regulatory element of woodchuck hepatitis virus; f, encapsidation signal including the 50bp portion of the gag gene (GA). (b) Summary of the
characteristics and the potential applications of the cardiac-specific LVVs mentioned in this review. Blar, blasticidin resistance; eGFP, enhanced green

fluorescent protein; hEnAct, human a-cardiac actin enhancer (850 bp); hTN, human cardiac troponin I 50 bp flanking region (hTNNI3-340 bp); mCherry, red

fluorescent protein; MLC2v, myosin light chain 2 ventricular isoform; NCX1, cardiac sodium-calcium exchanger; Neor, neomycin resistance; Puror, puromicin

resistance; aMHC, alpha-myosin heavy chain.
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(cTn) I), the NCX1 promoter produced the lowest expression levels in
vascular cells and fibroblasts. The authors also proposed the applica-
tion of an NCX1-luciferase/green fluorescence protein system for the
identification of cardiogenic molecules from small compound
libraries, suggesting the potential of this technology in drug discovery
applications for the identification of new therapeutic molecules active
on relevant pathways.

As an alternative to the above, drug-inducible or conditional
systems may represent valuable options and will be briefly discussed
hereinafter.

GENE DELIVERY BY LVVS: INDUCTION OF DIFFERENTIATION

AND GENE THERAPY OF MYOCARDIAL DISEASES

The establishment of standardized protocols for the production of
CPCs and CMCs would be advantageous for both basic research and
preclinical sciences, facilitating molecular dissection of the events
driving cardiac-fate specification on the one hand and acting as a
way of obtaining a source of ‘committed’ cells suitable for replacement
therapy of the failing heart on the other. LVV technology offers a
promising means of delivering transgenes into cultured cardiac cells
and the myocardium. The purposes of gene delivery are various
and span from the induction of differentiation to the genetic
modification of diseased cells for therapeutic reasons. Examples
of LVV-based strategies are summarized in Table 1 and discussed
below in detail.

The stable or regulated introduction of specific genes or regulatory
sequences involved in cardiac-fate induction and CMC proliferation/
survival has been demonstrated to improve the differentiation process
and to act positively on cardiac function in animal models of
myocardial diseases.35–39 For example, LVV-mediated prodynorphin
overexpression in mouse stem cells induces a remarkable enhancement
of the expression of the two cardiac-promoting genes GATA-4 and
Nkx2.5, resulting in a dramatic increase of spontaneous beating
activity.38 In another study, Koyanagi et al.37 provided evidence that
Sox2 enhances the pluripotency of circulating mesangioblasts and
facilitates their differentiation towards the cardiac lineage; in addition,
a significant improvement of cardiac function was observed in vivo

after transplantation of the Sox2-transduced cells in mice models of
myocardial infarction. The positive effects on cardiac function was
attributed mainly to the contribution of the Sox2 injected cells to
tissue regeneration, on account of their increased proliferation capa-
city and the gained pluripotency and developmental competence
rather than to an effective role of Sox2 on cardiac function itself.
A similar outcome may be reached by directly targeting molecular
pathways regulating contractility,40 calcium handling,41 the response
to oxygen changes42 and others. To give an example, LVV-mediated
intra-coronary delivery of SERCA2—which encodes the sarcoplasmic
reticulum Ca2+-ATPase pump that regulates CMC contraction and
relaxation—has been shown to protect against cardiac remodelling
and to improve functional parameters of the heart after myocardial
infarction, resulting in a better survival rate of the treated mice; the
effects observed in vivo are probably the results of molecular remodel-
ling by SERCA2 expression.39

Similarly, gene therapy can make use of silencing approaches to
downregulate the expression of genes leading to a certain disease
phenotype: RNA interference technology targeting myotrophin, for
example, has been shown to attenuate cardiac hypertrophy in vitro
and in vivo through a mechanism involving the inhibition of the
NF-kB signalling pathway.36

Regarding cardiovascular gene therapy, the potential targets are
several, such as proteins involved in pathways regulating vascular,
muscular and myocardial cell functions. Preclinical gene therapy
studies have been attempted in many animal models of heart disease:
the gene delivery strategies used have mostly employed adenoviruses
and adeno-associated viruses to demonstrate the feasibility and the
potential of gene therapy approaches for treating pathologies of the
heart.43–46 However, the use of these vectors has diminished because of
immunogenicity issues, their inability to integrate into the host
genome and their failure to maintain long-term expression. On the
contrary, LVVs are capable of inducing prolonged expression of the
transgene, and they do not trigger an inflammatory response, so they
have low immunogenicity.

Depending on the specific experimental settings, the promoter
driving transgene expression may be either constitutive, conditional

Table 1 LVV-based gene delivery strategies for myocardial diseases

Promoter type Therapeutic gene Species/biological model Delivery Biological/therapeutic effect Reference

Differentiation induction

Constitutive (CMV) Prodynorphin Mouse ESC line (aMHC_Puro) Cell infection Cardiac fate induction and increased

spontaneous beating activity

38

Constitutive (SFFV) Sox2 Human circulating mesangioblasts

(cMAB)

Cell infection Pluripotency enhancment and improvement of

cMAB differentiation toward the cardiovascular

lineages

37

Infarcted nude mice Intra-muscular injection (of infected

cMAB)

Improved cardiac function

Gene/cellular therapy

Constitutive (CMV) Myotrophin-shRNA Myotrophin transgenic mice Direct heart injection Attenuation of cardiac hypertrophy (cardiac

mass reduction)

36

SERCA Rat ischemic heart failure model Hypotermic intracoronary Protection from cardiac remodelling after myocar-

dial infarction with survival rate improvement

39

HIF-1a Mouse model of myocardial

infarction

Bone marrow-derived HSC infection and

intrafemoral injection in irradiated mice

Improved cardiac function after myocardial

infarction

35

Cardiac-specific (either

a-MHC, MLC2v or cTnT)

a-Gal a-Gal deficient Fabry mice Neonatal temporal vein injection Decrease of the globotriaosylceramide (Gb3)

accumulation in the heart

34

Abbreviations: CMV, cytomegalovirus; cTnT, cardiac troponin T; HCS, haematopoietic stem cells; HIF-1a, hypoxia inducible factor-1alpha; MLC2v, myosin light chain; Puro, puromicin;
SERCA, sarcoplasmic reticulum Ca2+-ATPase; SFFV, spleen focus forming virus; sh, short hairpin; a-Gal, a-galactosidase A; a-MHC, alpha myosin heavy chain.
Summary of the most relevant LVV-based strategies used for basic research and preclinical studies of myocardial diseases through some relevant examples employed either for inducing
cardiac differentiation or gene/cellular therapy applications.
Information about the therapeutic gene, the viral vector promoter type, the species and biological model systems used, the LVV delivery method and the biological or therapeutic effect are
presented.
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or tissue specific. Typically, strong and ubiquitous promoters, such as
those of phosphoglycerate kinase and cytomegalovirus, have been
used. However, the protracted and unrestricted expression of a
transgene may potentially have deleterious side effects in vivo.
Regulated conditional expression by tissue-specific, Cre-LoxP47 and
drug-inducible systems48 have been suggested and developed for
controlling transgene expression in space (cell-specific) and in time
(inducible systems).

As mentioned, the use of cardiac-restrictive LVVs has been recently
proposed as a therapeutic approach for treating Fabry disease, a
disorder caused by a deficiency of a-galactosidase A activity, that
leads to the accumulation of globotriaosylceramide (Gb3) in various
tissues, including the heart.34 The authors created LVVs harbouring
myocardial-specific promoters (a-MHC, MLC or cTn) to drive
a-galactosidase A expression and used them to treat mouse models
of Fabry disease: their results showed that the strategy was effective on
the cardiac manifestation of the disease, decreasing accumulation of
Gb3 in the heart, and indicated the potential application of such
technology to other progressive pathologies of the heart.

REPROGRAMMING STRATEGIES: A PEEK AT DISEASE

MECHANISMS WHILE WAITING FOR A CURE

The employment of LVVs has recently made it possible to repro-
gramme somatic cells so that they become pluripotent. This is done
through the introduction of a number of so called pluripotent genes—
Oct4, Sox2, Klf4, cMyc, Lin28 and Nanog—into the host genome; the
resulting cells have been termed iPS cells.49–51 iPS cells have been
derived from many different adult somatic cell categories originating
from several species, including humans, and these have been demon-
strated to give rise to all cells types present in the body. Reviews from
the Jaenisch52 and Hochedlinger53 laboratories give a comprehensive
overview of this topic.

In virtue of their distinctive features, iPS cells offer a unique
opportunity to derive patient-specific, differentiated cells and to create
new in vitro model systems that facilitate not only the investigation of
human diseases but also the screening of new therapeutic molecules.54

iPS cells are also extremely exciting for future cell replacement therapy
applications: the creation of such cells would overcome many of the
immunological limitations currently hampering the therapeutic use of
other PSCs and their derivatives.

The effectiveness of iPS cells has recently been tested in several
diseases, including congenital cardiovascular disorders:55,56 iPS cells
have been employed in the investigation of a monogenic cardiac
disorder (i.e., long QT syndrome) and pathologies where cardiac
defects are part of a complex phenotype (i.e., Leopard and Timothy
syndromes).57–59 These reports confirmed that patient-specific iPS
cells can give rise to differentiated CMCs that possess the main
functional and morphological aberration typical of the disease in vivo.

To date, heterologous systems and transgenic models have been
used to investigate disease mechanisms. However, CMCs possess
characteristics and electrophysiological properties that differ among
species. Consequently, deriving a species-specific cell-based system
would be extremely advantageous for the investigation of cardiovas-
cular disease mechanisms in a precise human context. It is worth
pointing out that iPS-derived CMCs respond to specific pharmaco-
logical treatments (i.e., adrenergic stimulation, b-blockers and ros-
covitine), strongly indicating the feasibility of iPS cell technology for
drug discovery applications and for testing patient-specific therapies.

Gene correction has also become possible because of the advances
made in site-specific homologous recombination strategies using the
LVV-based zinc finger nucleases. Zinc finger nucleases are synthetic,

sequence-specific nucleases consisting of a customized zinc-finger
DNA-binding domain engineered to bind to a specific DNA sequence,
and a non-specific DNA endonuclease cleavage domain (Fok1): these
engineered zinc finger nucleases are able to introduce site-specific,
double-strand breaks in DNA and to drive targeted manipulation
at genomic loci. The induced breaks stimulate the endogenous
homologous recombination machinery, allowing the introduction of
an exogenous DNA ‘repair template’.60 Physiological phenotypic traits
can thus be rescued by the reversion of the genetic alteration leading
to the disease. This represents a step forward in the combination of
gene- and cell-replacement therapies.

Because they give rise to derivatives of all three germ layers, iPS cells
may also constitute an inexhaustible source of cells for replacement
therapy: in fact, CPCs, CMCs, smooth muscle cells and endothelial
cells have all been obtained from iPS cells. However, tumorigenic
issues related to the random integration of the viral genome used to
introduce reprogramming and the presence of contaminant stem cells
within the pool of differentiated cells for transplantation still limit the
use of iPS cells for therapeutic applications. To overcome this, non-
integrating approaches for reprogramming based on either excisable
LVVs or non-viral systems (e.g., synthetic RNA, proteins and plas-
mids) have been proposed. Unfortunately, these techniques are not
without difficulties: the excisable LVV approach requires sequencing of
the whole genome to verify correct excision, and apart from the RNA-
based approach—which, however, is technically challenging—non-
viral systems are inefficient.53 Additionally, these approaches do not
overcome the issue related to tumorigenesis associated with cell
contamination. A more recent step forward in cellular reprogramming
techniques may be more decisive in overcoming these difficulties: it
seems that it is possible to induce one somatic cell type to become
another without first reprogramming it into a pluripotent state.
This process, referred to as ‘transdifferentiation’, is induced by the
ectopic expression of cell-specific factors using LVVs. To date, fibro-
blasts have been successfully converted into neuronal cells61 and multi-
lineage blood progenitors.62 CMC-like cells have also been obtained by
ectopic expression of the cardiac-specific genes Gata4, Mef2c and
Tbx5.63 Even though further studies are necessary to determine the
molecular and functional properties of the converted cells, transdiffer-
entiation may represent a valid alternative for the generation of
patient-specific differentiated cells and the production of CMCs for
modelling and therapy of cardiovascular disease.

FINAL CONSIDERATIONS

It has been consistently demonstrated over the past decade that LVVs
represent a feasible and effective strategy for cardiac gene detection
and transfer in vitro and in vivo. The capacity of LVVs to maintain
efficient, stable, long-term expression of the transgene, their ability to
transduce non-dividing cells and their low immunogenicity have
made LVVs one the most suitable tools for gene therapy applications,
especially in the cardiovascular field. In fact, LLVs are being increas-
ingly tested for applications in preclinical studies.34–37,39,64–66 LVVs
have also been used successfully for reprogramming strategies that
generate iPS cells and for the transdifferentiation of somatic cells.
However, safety issue concerns are still restraining their use in the
clinical setting: indeed, LVVs do have the potential drawback of
causing insertional mutagenesis through the random integration
of DNA into the host genome, leading to the aberrant expression of
important genes and to tumorigenesis.67,68

Preclinical in vivo studies have highlighted several limitations of
gene therapy applications for human cardiovascular diseases: the most
relevant of these regard the route of administration (LVV delivery is
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reviewed by Ly et al.69), transduction efficiency and specificity, and,
most importantly, the obtainment of a functional and synchronous
engraftment. In fact, arrhythmic events are often associated with cell
replacement therapy of injured myocardium because homogeneous
transduction of the entire myocardium is not possible and transduced
cells are not uniformly distributed; engrafted cells can also fail to
synchronize with the rhythm of the recipient heart. Additionally,
perfusion of LVVs into the heart may result in the transduction of
aspecific cells, and systemic spread may occur causing the appearance
of adverse side effects. As mentioned above, the development of more
finely regulated and specific systems may overcome some of these
issues: a system in which transgene expression is restricted to a given
cell type and can be reversibly induced with an antibiotic is probably
the best approach. Another strategy that may be interesting to
consider regards the alteration of the viral envelope so that it becomes
specific for a certain cell type: LVVs are usually pseudotyped with a
VSV-G envelope, a glycoprotein that interacts with a ubiquitous
receptor and that confers the viral particles a broad host-cell range.
The tropism of LVVs may be controlled by using alternative glyco-
proteins that preferentially interact with specific cell types or by
genetic modification of the viral surface (this topic has been reviewed
by Bouard et al.70).

Nevertheless, LVVs are currently being assessed in clinical trials for
their use in several non-cardiac human diseases; completion of these
studies will allow us to better evaluate the efficacy of this strategy and
to get a perspective of the wider therapeutic value of LVVs. These trials
are being carried out on patients with Parkinson’s disease, b-thalas-
saemia and other haematopoietic disorders.71–73 Overall, the results
are promising so far. However, in one b-thalassaemic patient treated
with an LVV-based b-globin therapy, clonal dominance of haemato-
poietic stem cells has been reported.74 Even though isolated, this
occurrence has renewed the need for the development of improved
systems to strengthen the safety of LVV technology. Technical
improvements made in the design of viral vectors to produce site-
specific insertion and the use of inducible, cell-specific systems may
help to reach this goal. It is noteworthy that genotoxicity is closely
related to the type of transduced cell and appears to affect primarily
stem cells rather than somatic cells;75 for this reason, when an LVV is
constructed for therapy, vector design, purity and transduction
methods should be carefully evaluated in the appropriate cellular
context.

The studies published so far strongly support the feasibility of the
application of LVV-based strategies to treat patients with cardiovas-
cular diseases. Before this becomes a reality, however, the safety and
specificity of the vector systems available require further development.
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